skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khetawat, Harsh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MANA-2.0 is a scalable, future-proof design for transparent checkpointing of MPI-based computations. Its network transparency (“network-agnostic”) feature ensures that MANA-2.0 will provide a viable, efficient mechanism for trans-parently checkpointing MPI applications on current and future supercomputers. MANA-2.0 is an enhancement of previous work, the original MANA, which interposes MPI calls, and is a work in progress intended for production deployment. MANA-2.0 implements a series of new algorithms and features that improve MANA's scalability and reliability, enabling transparent checkpoint-restart over thousands of MPI processes. MANA-2.0 is being tested on today's Cori supercomputer at NERSC using Cray MPICH library over the Cray GNI network, but it is designed to work over any standard MPI running over an arbitrary network. Two widely-used HPC applications were selected to demonstrate the enhanced features of MANA-2.0: GROMACS, a molecular dynamics simulation code with frequent point-to-point communication, and VASP, a materials science code with frequent MPI collective communication. Perhaps the most important lesson to be learned from MANA-2.0 is a series of algorithms and data structures for library-based transformations that enable MPI-based computations over MANA-2.0 to reliably survive the checkpoint-restart transition. 
    more » « less
  2. Checkpoint/restart (C/R) provides fault-tolerant computing capability, enables long running applications, and provides scheduling flexibility for computing centers to support diverse workloads with different priority. It is therefore vital to get transparent C/R capability working at NERSC. MANA, by Garg et. al., is a transparent checkpointing tool that has been selected due to its MPI-agnostic and network-agnostic approach. However, originally written as a proof-of-concept code, MANA was not ready to use with NERSC's diverse production workloads, which are dominated by MPI and hybrid MPI+OpenMP applications. In this talk, we present ongoing work at NERSC to enable MANA for NERSC's production workloads, including fixing bugs that were exposed by the top applications at NERSC, adding new features to address system changes, evaluating C/R overhead at scale, etc. The lessons learned from making MANA production-ready for HPC applications will be useful for C/R tool developers, supercomputing centers and HPC end-users alike. 
    more » « less
  3. This work contributes a generalized model for quantum computation called NChooseK. NChooseK is based on a single parametrized primitive suitable to express a variety of problems that cannot be solved efficiently using classical computers but may admit an efficient quantum solution. We implement a code generator that, given arbitrary parameters for N and K, generates code suitable for execution on IBM Q quantum hardware. We assess the performance of the code generator, limitations in the size of circuit depth and number of gates, and propose optimizations. We identify future work to improve efficiency and applicability of the NChooseK model. 
    more » « less